Selasa, 04 November 2008

Interpreting the Archaeological Astronomy Record


As we have seen, astronomy helps us learn how the cosmos was perceived and understood in the past based on evidence we can retrieve from the material record. The “raw resource” is directly accessible to us: within certain boundaries of error we can reconstruct the positions of the sun, moon, stars, and planets in the night sky at any place and any time in the past. This means that we can readily identify ways in which ancient architecture could have made reference to celestial objects and events. But we must retain a sense of proportion. The astronomical ORIENTATION of a monument, to take an example, might only have conveyed meaning to a few people around the time of its construction, whereas the monument would also have been significant to people in many other ways, communicating meaning by way of its form, the materials used, and other aspects of its location.
In recent years archaeologists have applied a variety of interpretative approaches to the study of how people in the past conceptualized the LANDSCAPE. Yet landscape itself is a limiting if not excluding term. Its use reinforces a Western conceptualization of space that divides the world into three distinct parts—land, sea, and sky—and then, more often than not, leads us to ignore two out of three of these. Contrast this concept of landscape with that of the indigenous person who would, without hesitation, identify numerous connections between objects and events in the sky and many other aspects of his or her experience. In dealing with past as well as modern indigenous societies, the term worldview should mean exactly that: a people’s understanding of the totality of the perceived environment. The evidence available to the archaeologist consists of a present-day landscape containing scattered traces of past human activity, the end result of centuries—even millennia—of processes of attrition that have served to modify and to destroy. Archaeologists can look at the remains of permanent structures such as houses, tombs, and temples, and examine their location as well as architectural features that seem to express associations with features in the visible landscape and objects in the sky. Other human activities leave traces that are fixed in space, such as rock art. Beyond this are numerous types of material evidence, such as small artifacts, which are not fixed in space but may still tell us a great deal in various ways.
A well-tried approach is to try to identify alignments that were deliberately incorporated in architecture or in the location of manmade structures in relation to other prominent features in the landscape. The latter approach has been successful in central Mexico, where the day of sunrise or sunset behind prominent mountains as viewed from certain pyramids and palaces has been found to correlate with calendrical ceremonies performed in sanctuaries built on those mountains. The hilltop palace of CACAXTLA, built in what is now the Mexican state of Tlaxcala in the seventh century C.E., was located directly on a preexisting alignment connecting an older ceremonial site with La Malinche, a prominent volcanic peak still important today as a source of rain and symbol of fertility. The times in the year when the sun rose behind this mountain from Cacaxtla and other temples in the alignment marked two important calendrical festivals and times of ritual pilgrimage. The observances survive, in the form of Christian festivals, to this day. In this instance ethnohistoric and ethnographic evidence confirms the meaning of symbolic alignments. Where such evidence does not exist, identifying meaningful alignments is much more problematic. Clearly, it is possible to identify alignments between manmade structures and natural features that are in fact totally fortuitous and had no meaning whatsoever to anyone in the past. One possibility is to look for (what seem to us to have been) the most prominent manmade and natural features in the landscape in order to examine possible alignments of significance between them. But even this may be misleading. Mursi sun watchers stand by a favorite boulder or tree to make observations rather than erecting a more permanent marker that would be evident in the archaeological record of the future. Many important dates in the Hopi solar horizon calendar are marked by tiny, inconspicuous skyline notches, while many more conspicuous horizon features are unused. Furthermore, there is generally no obvious natural feature (such as a prominent notch or peak) in the solstitial directions, important as these actually were and are to the Hopi. The reason is that traditional Hopi villages from which observations were made were not located with regard to astronomy and calendrics. Walpi, for example, is perched on a narrow cliff-top mesa: its inhabitants had a given horizon and could not move their position of observation except within very narrow margins in and around the village. They did make precise horizon observations, but this fact would not be recoverable from the archaeological record alone. Any future archaeologist proposing that these particular alignments were significant would be open to the accusation of being highly selective with the data.
In other cases, however, evidence of horizon observations might be more readily identifiable in the archaeological record of the future. The Zuni, for example, had sun-watching stations used for horizon observations prior to the summer solstice. And the inhabitants of the Polynesian island of MANGAREVA established observation places for noting the summer and winter solstices against suitable landmarks, such as adjacent islets or mountain ridges, often erecting stones upon them as foresights. This example bears some similarity to the interpretation of many of the British megaliths, erected in the third and second millennia B.C.E., put forward in the mid-twentieth century by the Scottish engineer,
Alexander Thom. Basing his conclusions upon surveys of many hundreds of STONE CIRCLES, SHORT STONE ROWS, and single standing stones, Thom concluded that “megalithic man” had undertaken high-precision observations of the sun and moon using distant mountainous horizons as the observing instrument. The megaliths, according to Thom, marked where to stand and, in many cases, pointed out the horizon foresight (such as a conspicuous notch between two mountains) that was to be viewed.
Thom’s results did not stand the test of time. One reason is that his data set included a wide variety of sites spanning a wide geographical area and a period of some two millennia. Subsequent analyses that have been restricted to certain areas during particular periods, and have taken account of a wider range of archaeological evidence, have been more successful. The Scottish RECUMBENT STONE CIRCLES (RSCs) are particularly enlightening in this respect. These are a group of several dozen stone circles confined to an area within about fifty kilometers (thirty miles) of Aberdeen in northeastern Scotland. Their distinguishing feature is a single recumbent stone flanked by two tall uprights, which are without exception oriented between west-southwest and south-southeast, that is, within a quarter of the available horizon. Furthermore, they are consistently aligned upon the midsummer full moon, suggesting that ceremonials were carried out there when the midsummer full moon was passing low over the recumbent stone. This is a conclusion backed up at one excavated site, Berrybrae, where scatters of quartz and burned flint—white stones whose color is similar to the light of the moon—were found in the vicinity of the recumbent stone. However, more recent excavations at other sites have confounded the issue. The RSCs were modest monuments, apparently serving relatively small farming communities around 2000 B.C.E. Aligning them upon the moon at an important time, and also if possible upon a conspicuous feature in the landscape such as a prominent hill (as is the case at many but not all of the circles), tied them into nature in two different ways. This almost certainly served to reinforce the sacred status of the monuments for the people they served. It seems likely that society in this area at the time never became centrally organized and controlled, and this has bequeathed to us a set of small, similar monuments among which we can easily spot repeated patterns. This enables us to catch a glimpse of some aspects of ritual tradition and worldview—a glimpse that points strongly to the moon as a principal focus of attention. Similar conclusions have been reached in investigations of SHORT STONE ROWS in southwest Ireland.
A step on from identifying and interpreting monumental alignments is to ask why the monuments were placed where they were and not elsewhere. Answering this question involves a detailed investigation of whole landscapes to identify potential alternative locations. Such an investigation was carried out in the late 1980s in the northern part of the Isle of Mull, off the west coast of Scotland. It showed that a set of five stone rows found there, apart from being consistently aligned upon the moon, were all placed so that Ben More—the most conspicuous mountain on the horizon in the area—was on the very margin of visibility, clearly in sight to one side of each row but completely hidden by intervening ground from the other. One suggestion is that the stone rows’ main significance was as some sort of symbolic boundary marker between areas from which this (sacred?) mountain was, and was not, visible.
One supposition that emerges from these studies of monuments incorporating astronomical alignments is that many of them became “special” when the astronomical body in question appeared at the appointed place. At these times, their sacred power was surely reinforced. Another way in which a similar effect could be achieved—creating a very considerable visual impact at certain special times—was through the interplay of sunlight and shadow. Widespread evidence indicates an interest in creating carefully orchestrated interplays of shadow and light at sacred places, sometimes producing special effects visible on only very rare occasions. A famous example occurs at the passage tomb of NEWGRANGE in Ireland. Here, for a few precious minutes after sunrise on a few days around winter solstice, the dark interior of the tomb becomes lit up by sunlight shining directly down the passage. Even in the present day, such hierophanies can capture the imagination and become the focus of great public spectacles, whether or not they were actually intended by the builders. A case in point involves the pyramid of KUKULCAN (El Castillo) at Chichen Itza. It contains a staircase on each of its four sides, and at the base of the northern staircase is the carved head of a serpent. On days close to the equinoxes, the light of the late afternoon sun falling across the stepped corner of the pyramid creates the effect of a serpent’s body, which only “appears” at these times. This spectacle now attracts tens of thousands of visitors. In contrast to Kukulcan, no serious doubts exist that the Newgrange hierophany was actually intentional; though, by its nature, it could never have formed a great public spectacle, since the space inside the tomb was confined. This dramatic effect was intended for the ancestors, or for ancestral spirits.
What was the purpose and meaning of such hierophanies? There is no simple answer, but further clues can be found by looking at more modest examples, often to be found in rock art. By carefully placing rock art designs, sunlight could be made to play across them at certain times, with impressive effect. A number of interesting examples are to be found in California, which was densely populated by hunter-gatherer groups prior to the European conquest. The Luiseño, for example, had an intense ceremonialism, a rich sky lore, and a calendar regulated by various astronomical observations. Although their seasonal calendar was lunarbased, they observed and celebrated the solstices, attaching particular importance to the winter solstice, which they regarded as a time of cosmological crisis. Solar imagery is evident at various Luiseño rock art sites, and light-and-shadow effects have been discovered at three or four of them, more than one involving daggers of sunlight that bisect painted discs. One of the most famous shadow-and-light phenomena concerns a petroglyph situated toward the summit of Fajada Butte, in Chaco Canyon. A carved spiral hidden away behind three slabs of rock leaning against a vertical rock face is occasionally lit up by the light of the sun shining through cracks in the rocks in front of it. Around noon on the summer solstice, however, a thoroughly distinctive dagger of light suddenly appears and bisects the carving. How should this be interpreted? Assuming that the slabs were carefully placed rather than falling into their positions naturally (and there has been some debate on this issue), it appears that a good deal of care was taken in positioning the spirals so that the summer solstice, and possibly other times of the year also, were clearly marked. The location is difficult to access but good for astronomical observation. Comparisons with the practices of historic Pueblos suggest that it might have been a sun shrine—a sacred place where a sun priest came to deposit offerings at certain important times in the ceremonial year. In this sense it would have been far more than a simple calendrical device. It was more likely something that, through its powerful symbolism, helped to affirm the sacredness of this inaccessible place, and by so doing helped to reinforce the power of the person or people who understood its meaning and had the privilege of using it. As with astronomical alignments, we again encounter a methodological problem: just because we observe a shadow-and-light phenomenon does not mean that it was intended by the builders or had any special significance before our “discovery” of it. Given any pattern carved on a rock, what are the chances that the sun will play across it at some time, quite fortuitously, creating an unintentional effect? In the case of the Chaco petroglyph, more secure interpretations can only stem from wider evidence about Anasazi culture, perhaps with valuable clues from historic and modern Pueblo groups.
A different form of shadow-and-light phenomenon has been noted in Mesoamerica: the so-called zenith tube. ZENITH TUBES are vertical tubes incorporated in specialized ceremonial structures that marked the biannual passage of the sun through the zenith at noon, at which time sunlight could pass directly down the tube and light a chamber below. One of the most impressive examples is found at the ruins of Xochicalco in Mexico, where a tube more than five meters (sixteen feet) long opens into the roof of a natural cave artificially extended to form a rectangular gallery with three central pillars. The use of such tubes for the purposes of astronomical observation cannot be established with certainty but seems likely given the known significance of the ZENITH PASSAGE OF THE SUN in Mesoamerica, both from studies of the ancient Mesoamerican calendar and from modern ethnography.
Displays of light and shadow, especially if they occur only infrequently, can be highly impressive. It is easy to see how they could have conveyed symbolic power, reinforcing sacred associations that formed part of the fabric of the pre vailing worldview. Their presence in the archaeological record has the potential to reveal aspects of that worldview to us. The power to impress is conveyed to the modern investigator through direct experience—“being there” and experiencing the event for oneself has proved popular and is useful in generating tentative interpretations. But it also brings dangers. There is considerable potential for us to experience shadow-and-light phenomena that had no significance whatsoever to people in the past.
Great monuments also have the power to impress, none more so than STONEHENGE in England. Over the years it has attracted more than its fair share of theories, from the plausible to the plainly ridiculous. However, the general perception prevails that there was some sort of connection between Stonehenge and the skies, which accounts for its frequent appearance on the front covers of books on ancient astronomy. In the meantime, archaeological excavations have put some of these theories in a more secure context. The bluestone and sarsen circles, constructed around the middle of the third millennium B.C.E., replaced earlier timber constructions built within a circular ditch and bank that had been completed some 500 years earlier. The later stone monument was certainly a place of great power, and the solstitial alignment of the main axis, which all commentators agree was deliberate, represented a shift of several degrees from the earlier orientation. The transformation of the monument from timber into stone, the use of exotic stones from faraway places, and the sheer size and scale of the edifice strongly suggest a process of enriching the ritual symbolism of the site around 2500 B.C.E. to legitimize its place at the center of the cosmos and hence its ultimate power. This transformation probably served in turn to reinforce the earthly power and influence of a social elite. The change in the axis to incorporate the solar alignment was almost certainly part of the same process.
Modern Western science is only one of many frameworks of thought within which people all over the world, from Palaeolithic times to the present day, have gained an understanding of natural phenomena, including what could be seen in the sky. Modern science only seems the pinnacle of intellectual achievement from a Western perspective, and seeing it as such creates a tendency, when trying to comprehend non-Western modes of understanding, to single out particular “advances,” seeing them as steps along the road. From an anthropological point of view, it seems stiflingly restrictive to proceed in this way when we can seek a much broader appreciation of different developments in human thought. This can only be achieved by studying the great many ways in which people have striven to comprehend the world that they inhabit and the many different contexts—physical and social—within which particular developments in thought have occurred. This applies just as much to sky knowledge as to all other knowledge. Above all, we need to recognize the magnificent diversity of human worldviews that has existed through time, and to respect them for what they were and are, even though we will inevitably continue to describe them, and try to make sense of them, in the framework of our own.

Tidak ada komentar: